Skip to main content

Advertisement

Table 1 Summary representing some of the relevant reports on the growth of single crystals via the SSCG method

From: Current status of solid-state single crystal growth

CategoryFormulaSeedGrowth conditionsCrystal sizeKey parametersApplicationRefs.
Pb-based piezoelectricsPMN‒PT(001) PMN–PTHot pressing in excess PbO (880‒900 °C, 30 min, 20 MPa), then annealing in air (1150 °C, 0‒10 h)Increase of k with increase of PbO up to 3 vol.%; decrease of k with PbO larger than 3 vol.%Transducers and actuators for military and medical application[45]
 Undoped and Mn-doped
PMN‒PT
BZTHot pressing to obtain ceramics, then annealing at high temperatures(30 × 30 × 5) mm3KT3, d33, tan δ - 50% decrease, EC - 150% increase, and Qm - 500% increase compared to PMN‒PT ceramicsHigh-power piezoelectric transducers[46]
 PMN‒PTBaTiO3Hot pressing to obtain ceramics, then annealing at high temperatures> 1.5 inch
(~ 38 mm)
Chemically homogeneous, high-density single crystal[48]
 BS–PMN–PT(110) BZTAnnealing (1050 °C, 100 h) with PbO/Bi2O3 flux and embedded seed500–1000 μmGood chemical stability, no migration of ions between the seed and the grown single crystalElectromechanical devices operated at elevated temperatures[49]
 Mn‒PMN‒PZTBZTHeat treatment of pre-sintered ceramics with seed on top(15 × 15 × 5) mm3TRT = 145 °C; EC = 6.3 kV/cm;
k33 > 0.9; d33 = 850‒1100 pC/N
High-power piezoelectric applications (sonar transducers, medical ultrasonic devices, ultrasonic motors)[8]
Pb-free piezoelectricsKNN(110) KTaO3Two-step sintering in hot press (975 °C, 2 h, 50 MPa, then 1100 °C, 100 h, 50 MPa) with K4CuNb8O23 as sintering aid and embedded seed1890 µmPorosity and pore size significantly reduced (from 100 to 1‒2 µm) by hot pressingPb-free replacement for PZT piezoelectrics[52]
 KNN‒BCuNNo seedSintering (1120 °C, 2 h) with CuO as sintering aid and BaCO3 to compensate for the Na+ loss1.3 cmg33 = 131 × 10−3 Vm/NPiezoelectric sensors and energy harvesting devices[58]
 (K0.45Na0.55)0.96Li0.04NbO3No seedSintering in air (1080 °C, 10 h)(6 × 5 × 2) mm3TC = 432 °C; d33 = 689 pC/N; d*33 = 967 pm/VHigh-performance Pb-free piezoelectrics[59]
 CaZrO3‒Na0.5K0.5NbO3No seedSintering in air (1090–1115 °C, 15 h)2 cmTC = 391 °C; d33 = 488 pC/N[60]
 NBT‒BT‒KNN(110) SrTiO3Sintering (800 °C, 50 h) with embedded seed(6 × 6 × 8) mm3(001)-oriented NBT‒BT‒KNN: Smax = 0.57% and d*33 = 1050 pm/V at 7 kV/mmReplacement for Pb-based piezoelectrics[63]
 NBT‒BT‒KNN(110) SrTiO3Pre-sintering of ceramics (950 °C, 10 min), then annealing in air (900 °C, 30 h) with seed on top(3 × 3 × 0.8) mm3ρ = 96.9%; Smax = 0.67% and d*33 = 1670 pm/V at 4 kV/mmHigh-stroke actuator applications[65]
FerroelectricsBaTiO3No seedSiO2 slurry (additive) dropped on BaTiO3 green body; sintering in air (1370 °C, 80 h)1.5 cmk > 200 µm/h[72]
 BZTBaTiO3Pre-sintering of ceramics, then annealing for 100 h with seed on top(25 × 25 × 5) mm3(001)-oriented BZT: k33 = 0.85, d33 ~ 950 pC/N, g33 = 41 × 10−3 Vm/NActuators, sensors, transducers[77]
Al-based oxidesAl2O3No seedSintering in H2 atmosphere (1880 °C) with MgO as sintering aidup to 30 cmk ~ 1.5 cm/h; average grain boundary mobility ~ 2 × 10−10 m3/(N s)[80]
 Al2O3 filmc-sapphireHeat-treating of spin-coated film sample in air (1025 °C, 18 h)up to 2 µm thicknessk(c-plane) = 5 × 10−2 nm/s; k(r-plane) = 4 × 10−1 nm/sPatterned single crystal substrates[86]
 Nd:YAG(111) YAG;
(110) YAG;
(100) YAG
Pre-sintering of ceramics in vacuum (1550 °C, 3 h), then annealing in vacuum3‒5 mmη = 63% (2.4 at. % Nd:YAG)Solid-state lasers[42]
Other oxidesLa9.33Si6O26(001) La9.33Si6O26Pre-sintering of ceramics in air (1500 °C, 2 h), then annealing with seed on top (1725 °C, 2 h)Conductivity component parallel to the c-axis was ~ 100 times higher than the perpendicular[90]
 LaFeAsONo seedSintering of ceramics with Na-As as sintering aid (1080 °C, 200 h)(2 × 3 × 0.4) mm3Splitting of two transitions at TSDW = 127 K and TS = 145 K; linear behavior of magnetization as a function of magnetic fieldHigh-temperature superconductor[93]
  1. Sign "–" denotes that the information was not provided in the reference
  2. k, growth constant; KT3, dielectric constant; d33, piezoelectric charge constant; tan δ, dielectric loss; EC, coercive electric field; Qm, electromechanical quality factor; k33, electromechanical coupling factor; TRT, transition temperature between rhombohedral and tetragonal phases; TC, Curie temperature; g33, piezoelectric voltage coefficient; d*33, effective piezoelectric coefficient; Smax, maximum strain; ρ, relative density; η, optical slope efficiency; TSDW, temperature of emergence of the spin-density wave; TS, structural transition temperature